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7.1

7.2

7.3

7.4

7.5

7.6

The flux is ® = 101 m=2/3600s. Assuming the residual gas is Ny and T' = 300 K, then
p = ¢\/2rmkpT ~ 1077 Pa ~ 10~ mbar

The mean KE in the gas is %kBT, the mean KE in the beam is the same as the mean KE of those
hitting the surface, i.e. 2kgT (see 2.1(b)), so in the box the temperature will settle to the new value
Thew given by

3
ikBTnew = QkBTa
Le. Thew = 4T/3.

Assume the vapour pressure is constant, so that there is a constant effusion rate. 0.025 Pa.

f(v) = v3e ™" /28T 5o that (v) = 3y/221T = 1.88, /52T while v,y = 1.73,/ 22T

m

0 goes between 0 and O ~ a/d < 1 so that the rate is

A emax
n{v) / sin 26 6
4 0

and hence the result $nA(u)(a®/d?) follows using the small angle approximation.

This one is spherical geometry. m — ¥ + 26 = 7 so ¥ = 20. The solid angle between v and ¥ + d is
proportional to sin ) di. The number effusing through the hole between 6 and 6 + df is proportional
to cosfsin @ df. Hence the number deposited per solid angle is independent of € and the coating is
uniform.

7/

0 (G

HOLE

77 F=pA~3x10-7N.

7.8

p =nkgT and so n = p/kgT. By continuity we have
nV =—0A,

because the rate of change of number of molecules in the volume is equal to the effusion rate. Hence,
with @ = p/\/2rmkgT, we have dp/p = —dt/7 with 7 as defined in the question.



8.1 For No, 0 = 7d? = 4.3 x 107 m? (see Example 8.1). Then n = p/kpT with p = 10719 x 102 Pa.
With (v) = \/8kpT/mm = 475ms~!, we then have
e \=1/V2n0~7x10°m;
o 7 = )\/(v) ~ 25 minutes.
Since the chamber size is 0.5m, then molecules will collide about 10° times more often with the
chamber walls than with each other.
If p is raised by a factor of 10%, then A and 7 will go down by a factor of 10%.
8.2 P(x) =e %/* and so
(a) (x2) = 2)\? and Tms = V2.
(b) dP/dx = 0 leads to © = oo (the least probable length) and x = 0 (the most probable length).
(c) (i) 36.8%, (i) 13.5%, (iii) 0.67%.

8.3 The number hitting a plane is proportional to vg(v) dv cos € sin 6 df d¢. Hence

(2 cos ) = JSze™®/* [vg(v)dv Oﬂ/z cos? 0sin 0 df _ 22

Jo e /X [ug(v)dv foﬂ/2 cos fsin df 3

8.4 This question should have stated that n = 500cm™2 so that n = 5 x 105 m™3. In this case, and
estimating o = 7(2ag)? ~ 3 x 1072 m?, we have

o (v) =+/8kpT/7mm ~ 103 ms~1;
e \=1/v2n0~5x10"m;
o 7 =)\/(v) =1-2 years.



9.1

9.2

9.3

9.4

9.5

9.6

Although Nywater > Mairs Vwater = 1070m?s™1 < vy, = 1.3 x 107°m?s™!, so it depends what you
mean by more viscous!

k= 1Cy(c)A =pA 73:1‘;

A=24x10""m

This leads to day = 1.93 x 10710 m.

The effective atomic radius r = 1.95 x 1071 m is very similar.

First part is bookwork. The experiment showed that viscosity was independent of pressure. As you
reduce the pressure, fewer molecules collide, but they have travelled further and hence come from a
region where the transverse momentum is ‘more different’. The experiment would only ‘work’ until
the pressure was so low that A had reached the dimensions of the apparatus. If this was ~ 0.1 m,
then this implies p ~ 0.1 Pa.

Shear stress is ndv/dr, so considering a small element

dF = (2nrdr) -n-%u

and hence

a 4
G :/ rdF =% _ 91 % 10~Nm.

Expect 17 oc v/T, and (2000 K) /7(500 K) ~ 2.3 (whereas it ‘should’ be 2.0), so not bad. The effective
diameter d = (2/371)Y2(mkpT/7)*/* comes out as 0.25 nm at 2000 K and 0.27 nm at 500 K, whereas
the solid Ar value is 0.34 nm. The effective diameter goes down because the molecules are ‘squashy’
and penetrate more into each other when they collide at high speed. [Note: if you use the “corrected”
formula d = (5/161)/2(mkgT/7)/*, the answers become 0.31 nm at 2000 K and 0.33nm at 500 K.]

Since Cp = Cv + R, we have that Cy = Cp — R = yCy — R and so (v —1)Cy = R and the result
follows.

Writing C{; = Cy — 2R, we have that

K 15R 3 9 1
_= — — = = — —1 — = — —
" 1 + Cy 2R 4(’}/ )Cv Cy 4(9’}/ 5)CV

1 54 4k
7_9 T]CV '

Species  k/(nCyv) v

Rearranging this we have that

He 2.45 1.64
Ne 2.52 1.68
Ar 2.48 1.66
Kr 2.54 1.68
Xe 2.58 1.70

The results are all clustered around v = 5/3, not surprising since for a monatomic gas all of the heat
capacity is associated with the translational degrees of freedom for these gases.



10.1 A trial solution of T'(z,t) = T/(0,0)e’**=*Y in the one-dimensional thermal diffusion equation

or _ s &°T
ot C 0z2

(where C' is a heat capacity per unit volume) yields —iw = %(sz). In this problem w must be real

S0 we write
[wC 1+i
k=x+(14+1i){/— ==+
(1+1) 2K )

where § = /2k/wC is the skin depth. We choose the sign of k to get the right boundary condition:
here positive so that it doesn’t blow up as x — co. Hence for z > 0 we can write in general

T(a:,t) — ZAwefiwte(ifl)x/E.

If the boundary condition at the surface is then 7'(0,t) = Ty + 17 cos wt then matching terms we get
T(z,t) = To + T1 cos(wt — %)e*‘”/‘s.

Putting in the numbers, for daily fluctuations § = 0.13 m and the fluctuations in the cellar are
nanoKelvin! Annual fluctuations give 6 = 2.5 m and the fluctuations in the cellar come out to about
x

6°C. The phase lag can be estimated from the wt — £ term. The minimum will occur at a time to
when wty = £, so that putting in the numbers I get ¢ is about 68-70 days, i.e. in March.

10.2 The thermal diffusion equation corrected for heat generation j2p (where j is the current density,

j = I/(ma?)) per unit volume gives V2T = —I?p/n%a*k and hence
1d [ dT 2p
=)=
rdr \ dr m2atk

This integrates to
dT I?pr? n ‘
r— = ————— + cons

dr 2n2atk ’

and the constant is clearly zero. Integrating again gives

I?pr?
T=—"—3——
dm2atk +F
where (3 is a constant.

[A more elegant way of doing this (it saves one integration) is as follows: inside radius r < a the
power generated is j2pmr? per unit length; all that power has to move across the surface and so the
heat flux J out of the surface is:

2 2
jepmr 1, dT
J = = — = —K—.
(r) 2mr 2] pr " dr
Hence
dT'(r)  I*pr
dr  2m2aik’
and so o
I“pr
T(r) = —
(r) Am2atk +5

where (3 is a constant.]

(a) At r =a, T =Ty, fixing § and yielding



10.3

10.4

(b) The boundary condition is now

i (i)z = a(T(a) — Tui),

so that the final answer becomes

pl? 2 _ .2 I?p
T(r) =T+ ——— — —.
(r) air 4/{7r2a4( )+ 2am2a3
We want to find [T7 — T(0,¢)]/[Th — To] = 0.1, which implies that
20~ P(m/@)% — (.1

and hence D(7/a)?*t = In20 and the result follows.

The power coming into a region between z and = 4+ dx leads to a rate of increase of thermal energy

T
pCy (%t) ma’dx.

This is provided by —V - (=xVT') (per unit volume) which is a power
o’T

k——=ma’dz

Ox?

in one-dimension. However, heat can also be lost via the surface of the wire, leading to a term
—2radz R(T).

The result then follows.
In the steady state, 0T/0t = 0 and so one has to solve

PT  2A(T - Tp)
ox2 ak

(a) The solution to this is
T—-1Ty = CeVo® 4 De=Vou

where C' and D are constants and 94
o= —.
akK

For an infinite rod, we can neglect the CeV®® term and obtain
T =Ty + (Ty — Tp)e Voo

for the boundary conditions.

(b) Either evaluate the total heat loss:
/ A(T — Ty) 2madx = 2waA(T,, — To) / e VT dp = 7Ta3/2(Tm —To)V2KA,
0 0
or evaluate the heat transported at z = 0,

T
—k ((Z) wa® = kVa(Ty, — To)ma® = wa® (T, — To) V2K A.
€T =0

This all fails for finite rods since you cannot then neglect the other term in the solution. It will work
well enough if the rods are longer than a few diffusion lengths, where § = 1/\/a = /5% is about 3
cm, so maybe something over 10 cm should be OK for things to be correct at the 5% level.



10.5
10.6

10.7

10.8

10.9

(6,/8)* = nep/k = op

Since iw = Dk?, |dw/dk| = 2Dk and this can go to infinity when you consider waves with wavelengths
going to zero.

Z hwpTnu; = — Z Z hwyTv; %vi — Z hwiv;(n —ng)
k j ¢ k

k

and so this can be rewritten

. on 0T
Ji+1di = — Z Z ﬁwkijvi(s—T(s—xi.
kg

In an isotropic system one has
oT

K .
6%

1 5 6n
K= gzk:ﬁwkTv ST

For more details, see S. Simons, Am. J. Phys. 54, 1048 (1986).

JiJrTji:*

where

Heat flux is the same throughout and hence

AT
1A$i N

J

In cylindrical geometry, we have that

9 (.91 _,
or \"or ) T

and hence
T t
r—— = cons
or
and so
OT  const
or  r
Hence v d
constdr r
T2—T1:/ :constlni,
ry r 71
which fixes the value of the const. At r = r1, we can write
oT const k(Ty — T)
J=—Kk—=—kK = .
or 1 r1ln(re/r1)

Hence the heat flow per unit length, which is 277 J is given by

27TI<E(T1 - Tg)
111(7“2/7"1) ’

OT _ const
or  r

and so as before we can write ,
T, — T = constIn B

where T is the temperature at the surface of the lagging. The value of the heat flow at the surface
of the pipes is
const

JR:—KV R 5




while by Newton’s law of cooling we must have, at the surface of the lagging,
Jr =T, — Ty),

where T, is the temperature of the ambient air. The heat flow per unit length, ¢/L, can therefore

be written as
q const
— = —K

L R

21 R = —27mkconst,

and also as

% = W(T, — T,)2rr.

Putting these equations together gives

q gln(r/R)
7 = 2mhr <T+ “onrl Ta )

and hence
q 2m(T —Ty)

L A +Liin(r/R)

as required. The denominator goes through a minimum (which can be found by differentiating by r)
at 7 = k/h. When r is smaller, lagging doesn’t help. Since we are dealing with thin lagging, r is very
close to R (and of course can’t be smaller — you can’t have negative lagging!); hence the condition is
also a condition on R.



11.1

11.2

11.3

114

11.5

For an ideal gas, (g—g)T = 0 and hence U doesn’t change.

%% \Z

2 > RIydV

AW = (—pdV:/ B AV, In(Va/ V).
Vi Vi 14

The work done by the gas is RTy In(Va/V7).
The heat flow into the gas is RTy In(Va/V7), since AU = 0.

R = Cy — C, and hence

e dividing by Cy yields R/Cy = v — 1;

o dividing by C, yields R/C, =1 — (1/7).
If f = a2y + 2, then g—i = 2zy and % = 22 4+ 2y. It is an exact differential. Both methods of
integration lead to

T3ys — 177 4 Y3 — i

The problem here is that the question has been (deliberately) misleading about writing down which
variables are held constant. One can think of z as a function of r and 0, i.e. x = x(r, ), so from the
equation

T =rcosb,

<3z> z
— | =cosf = —.
or/, r

One can also think of z = z(y,r) from the equation

it follows that

22 =2 2,

<8x> < Ox > T
21' = == QT — e = —,
or Y or y T
Hence what is actually true is that

on\ _(or

o)y \ox),

Moral of the story: Think carefully about what is being held constant in a partial derivative.

in which case

No. Work can be converted into heat. Heat can be partially converted into work. They are not the
same thing.



12.1
12.2

12.3

12.4
12.5

12.6

Start with pV7 is constant and then substitute in pV o T.

The first two equations come from straightforward differentiation and then the second two follow
from the definitions C), = (@) and Cy = (ﬂ) . In an adiabatic change d@ = 0 and so one can
p |4

oT oT
write
dp _ (0QN (Op\ _ _ Cpp df/dT _  Cpp
dv 15)% 0Q ) df /dT VCy Wwv’
and hence
dp___dV
p - /-Y V ’
and the result follows.
When T is constant, dT" = 0 and hence
o\ _B
ov ), A

Now if dQ = 0, the first two equations immediately yield

dp = —(Cp/A)T,
av —(Cy/B)dT.

op _ (9o
ov adiabatic K ov T.

If p is constant, then we have C, — Cy = B (%)p and hence use of dV = —(Cy/B)dT yields

oy v (v
or adiabatic - B a 1- Y or P .

If V is constant, then we have C), — Cy = —A (g—;) , and hence use of dp = —(C},/A)dT yields

p _ % _ v (o
or adiabatic A Y- 1 or |4 .

The adiabat has a steeper gradient by a factor of ~.

Hence

Do all calculations with one mole of gas without loss of generality.

(a) Cylinders thermally insulated so that dQ = 0. Hence CydT = —pdV = —(RT/V)dV and hence
CyInT = —RInV+const, and hence Ty = T;/22/3 where T} is the final temperature.

(b) Initially have pV = RT; and finally have p(V 4 v) = RT}; where v is the volume in A after you
have pushed it as far as it will go. The work done on the gas is then p(V —v) = Cy (T — T;) where
the last equality follows from d@Q = 0. These can be solved to give Ty = 71;/5.

The change is adiabatic, so that
v "
p TV
If the ball moves up a distance x, then dV = Adz and the extra force on the ball is Adp = m& and
SO

mx + kx =0,

where
A’py

]{j:
v




and hence simple harmonic oscillation results with

2o A
mV "’

and the period 7 = 27 /w results.

In Rinkel’s modification, one equates gravitational PE with “spring” energy, so that

1 ~pA?L?
L=—-k(L/2)?=""—.
mgL = Jh(L/2)? = P

(Note that in this case the amplitude of the oscillation is L, which is from —L/2 to L/2, so the stored
“spring” energy is 1k(L/2)?.)



13.1
13.2
13.3
13.4

13.5

13.6

13.7

13.8

No: consider the definition of efficiency for a heat pump.
n=1-273/373 =0.27.
Law I, Law II respectively.

Label the points A: (p1,V1,T4), B: (p1,V2,Tg) and C: (p2,Va,T¢). The heat out on the isobar
AB is Q1 = Cp(Ty — Tg) = vCv(Ta — ITp) as you cool, while the heat in on the isochore BC
is Q2 = Cy(Tec — T), and no heat is transferred on the adiabat CA. Hence using PV o« T, the

efficiency isn = W/Q2 =1-0Q1/Q2 =1—7(Ta—1Tp)/(Tc —Tp) = 1=7(p1V1—p1V2)/(p2V2 —p1V2)
which gives the final result.

Q1 =Cy(T5—T5) and Q2 = Cy(Ty —T1) and pV7 is constant on an adiabat (in this case it’s better
to use TV7~! is constant). n =1 — Q2/Q1. The result follows after some algebra.

In steady state Q@ = Q.

The 1st law implies F + Q2 = Q1.

Carnot implies: Q1/T1 = Q2/Ts.

Eliminate @, @1 and @2 from these equations, for example by putting the third one into the second
one and yielding

E+ Q= Q11 /T>
which you can use to show that
A
E=AT —T)(Th /Ty — 1) = E(T1 —Ty)?
This can be expanded to give a quadratic in T5:
T? — (2T, + E/A)T, + T2 =0

which has solutions

E EN\? ET,
=T+t <2A) T

Thus for 30% of Eyax you need

A
BEpax = —1 2
0-38ma 293 0
and for 100% of E\,.x you need
A
Enax = = AT 2
293 (AT)

so that T7 = 20° + AT = 38.3°C.

The energy available from body 1 is C,,(T1 — Tt). The energy available from body 2 is C, (T2 — T}).
Hence W = C, (Th + T — 217).

The most efficient engine is reversible and so using the Clausius theorem, the integral round a closed

loop of dQ/T is zero, and hence fTTlf CpdT/T + f;;f CpdT/T = 0 and the result follows. (This result
can equivalently be derived by stating AS = 0, using the entropy S defined in the following chapter.)

In the steady state a(T — Tp) is balanced by the heat power coming from the heat pump, call it
Q2 = W 4 @1 where @7 is the heat power extracted from the river. The efficiency

"W ST 1y
SO rearranging gives
T™W
T-Ty) = ———
o 0) T—T,

and hence TW = o(T — To)2 which is a quadratic in T'. Easiest perhaps to solve for t =T — T} so
that t2 — tW/a — TyW/a = 0 and the result follows (use the positive root of the quadratic or you
have a cooling effect and in this country we tend to think of needing to keep our houses warmed not
cooled).



13.9 To save writing lots of zeros, I will measure temperature in units of 100 K. In these units we have
temperatures as follows:
initially: 3, 3, 1
ﬁnally: Tl, Tl, T2
Energy conservation implies that 277 + T, = 7.
Connecting them with reversible heat engines implies that 2In7; + In7 = 2In3 + In1 and so
TZT, = 9. Putting this altogether gives a cubic T} — %Tf +35=0.

This could be nasty to solve, except that a solution must be 77 = 3 (when you connect up the
reversible engines but run them for zero time!) so therefore you know one root. Hence (Ty — 3) (T2 +
oT1+8) = 0 and equating coefficients you can deduce o and 8 and arrive at (T1—3)(T1—32)(T1+1) =0
so the other positive root is Ty = 3 (or 150 K in proper units) and hence T = 4 (or 400 K in proper

. 2
units).
13.10
2
Tdiffuse X L
Tmechanical X L

For big engines Tqiffuse > Tmechanical, and heat engines work as expected. Thermal gradients persist
(they do not diffuse away) and mechanical work can be extracted from them.

For small engines Tqiffuse << Tmechanical, and thermal gradients diffuse away before you can exploit
them.



14.1

14.2
14.3

14.4

14.5

14.6

14.7

AS = — 239613 €l — —(CIn(363/291) = —185.7 J K~'. It is negative but the entropy in the sur-

roundings changes by C(363 — 291)/291 = +207.8 J K~! which is positive and larger. Hence the
entropy of the Universe goes up.

Yes: see the box on page 142.

a) AS = 0 because T is constant.
b) I?Rt = 3 x 10* J flows into the environment. Hence AS = 3 x 10*/300 = 100 JK~!.

(
(b)

(a) ASpatn = C'1n353/293 = 1.9kJ K.
(b) ASyes = C(293 — 353)/353 = —1.7TKJ K.
(¢c) Zero, because reversible.

(

(

200 200

8) ASiora = — [ CydT/T + [2% CydT/100 = —Cy In2 4 Cy = Cy (1 — In2) = 0.307 J KL,
b) ASiorat = — [ron CvdT/T + [{20 CydT /150 + [} CydT/100 = —~Cy In2 + Oy (1/3 +1/2) =
0.14 J K1,
Last bit:

AStotat = = Jion CvaT/T + ( fagys CvaT/(200 = 8) + [ CvdT/(200 = 26) +--+) = 0.

(a) ASUniverse = %CV2/273 = 18.3 uJ K~! because QV work is done by the battery and only
%QV = %C’V2 is stored in the capacitor, so that %QV = %C’V2 is heat in the battery.

(b) ASUniverse = 3CV?/273 = 18.3 uJ K~ again because now the stored energy in the capacitor
becomes heat in the resistor.

(¢) dU = 0 s0o AW = —RTIn2 = —dQ. Hence ASgs = RIn2, but ASsuroundings = —R1In2 so
ASuniverse =0.

(Or quicker, reversible implies ASyniverse = 0.)

(d) dQ =0so ASgaus = ASsurroundings =0so ASuniverse =0.

(Or quicker, reversible implies ASyniverse = 0.)

(e) Joule expansion, ASg.s = RIn2, ASguroundings = 0, S0 ASyniverse = RIn2 = 5.76 JK 1.
(

a) dU = 0 because dT' = 0 and hence TdS = pdV. Hence
aV aV
AS:/V g:nR/‘/ %:anna.

(b) S is a function of state, hence it does not depend on which route:

AS =nRlna.

For the van der Waals gas [and on reflection, this part of the question may be a bit too hard for a
student at this stage without reading ahead!],

as as
=(22) a7+ (=) av.
ds <8T>Vd +<8V>Td

Since dT' = 0, we only need to worry about the second term, and in fact we can write this as
dp
dS= (=) dV
(o1),

aV aV _
AS = / Y gy = nRAV. e (QV b
v aT ), v V—nb V—nb

In case (b), the temperature changes by

1 [ ap an? [(a—1
g 1), e ()

Hence




14.8 S/kg = -3, Bln P, = =Y, Pi(—BE; —InZ) = In Z + (U.

149 S/kg = =), P;InP;. With N molecules and probability p, = z that a molecule is type 1 and
probability P, = 1 — x that it is type 2, we have that

S/Nkp = —zlnzx — (1 — ) In(1 — z).



15.1
15.2

15.3

15.4
15.5

15.6

C =5x10""F and V = 3V gives £CV? = 1.4x10° eV which is much larger than kg7 In2 ~ 0.02eV.

(a) S=—>,Pilog, P = fllogg %% log, % - l1og2 1 — 1log, 1 =log, 4 = 2 bits.
(b) S =—3, Pilogy, P, = —1log, 1 1log, + — 1 log, 1 = 2 bits. Information has been lost. The gate
is not reversible.

Set k =1 and use Lagrange multipliers.
S=-) PP —a) P—(Y Pif(x)
and differentiate with respect to P;, yielding
—-InPj—1-—a—-8f(z;)=0
and hence
P; = e 1o Al @),

The first exponential can be got rid off by using the constraint that > P; = 1 and writing the answer
as

P; = 1 e Brf(x;)
Z(pB)

with Z(8) as defined in the question. The final result follows straightforwardly from
zi)) =Y fla;)P;
J

Straightforward argument.
(a)
S(P||Q) = ZPlog— ZPlog <ZP (Qi/P; — 1),

using the fact that logz <z — 1. Hence

-S(P|lQ) SZPi(Qi/Pi—l) :ZQi_Pi:ZQi_ZPi =0.

(b) Eqn 15.20 implies that
S(P||Q) = —Sp = _ Pilog(1/N) = —Sp —log(1/N) > P; = =5, +log N.

Since S(P||Q) > 0, then Sp <log N.

This is the “Monty Hall problem” and is a deceptively hard question. Many people think that it
doesn’t make any difference, but it does. She should swap.

The easiest way of seeing this is to say, for the sake of argument, that the contestant chooses door
number one. Then there are three possibilities:

e The car is behind door number one: the host will open door number two or three to reveal a
goat. In this case, swapping is the wrong thing to do and will lead to LOSING the car.

e The car is behind door number two: the host will open door number three to reveal a goat. In
this case, swapping is the right thing to do and will lead to WINNING the car.

e The car is behind door number three: the host will open door number two to reveal a goat. In
this case, swapping is the right thing to do and will lead to WINNING the car.

The probability that she picked the right door first time was 1/3. With the additional information
given, the probability that the car is behind the other, unopened door, is now 2/3.

[If a student doesn’t get this, try the following variant of the problem: you have 100 doors, 99 of
which conceal a goat and only one the car. The contestant makes a choice, and the game show host
opens 98 of the other doors to reveal a goat behind which. Now the car can either be behind the
door the contestant chose or the other non-opened door. It’s now pretty obvious that the contestant
should switch.]



16.1 Bookwork: H=U+ PV, F=U—-TS,G=H — TS and so

AU = TdS —pdV
dH = TdS+Vdp
dF = —SdT —pdV
dG = —SdT +Vdp

(o), - (%),
(&), - (@),
(av), = (22),
(%), = (),

16.2 (a) (i) (%T)U =~ (58)y (30)7 = ~(/OVIT (58) — ) and wse (35) 7= (3%) -

Q

o
oy, =— (28 (%)T = (1/C)[T (%)T +V] and use (g)T = —(3%),.

i) Joule expansion; (ii) adiabatic expansion; (iii) Joule-Kelvin expansion.

(b) use pV = nRT and substitute in. The adiabatic expansion leads to (2—5)5 = —p/Cy so that

dT = —nRTdV/(VCy) and the result follows from integrating. (Remember Cy /n = 3R and v = 3.)

16.3 dU =dW 4+dQ = —pdV +dQ = ( ) dT + ( ) dV. and so rearranging gives

0= (or), e |(ov), 2]

o= (5),~ (o). (%), ] (57),

We therefore can write

and use

and the result follows.

16.4 (a) U =U(S,V) and so dU = T'dS — pdV and hence

oU
T—(as)v
__(9U
P==\av )y

OUN _p(9p
v ), or ), P

and

(b) If U = U(T, V), then



and so

(), (450),

oU\ dT
;:/(W>TTQ+J£(V)7

where f(V) is an unknown function of V.

and integrating yields

16.5 This follows from the previous question. If U = U(T, V'), then we can write
U\ (o)
ov ) r or ),

16.6 Eqn 16.82 gives us S = Cy InT + RIn V + constant. Using pV' = RT for one mole and C, = Cy + R
yields the result.

and the result follows.

16.7 Eqn 16.82 gives us S = Cy InT + RInV + constant. Using pV = RT for one mole gives
S =CyIn(pV) + RInV + constant

and hence
S = Cy In(pV*+H/CV) 4 constant

which implies
S = Cy In(pV"7) + constant.

Now p = M/V where M is the total mass, so Inp = —InV + constant and hence the result follows.
Note the constants in these equations are not all the same.



17.1
2
0CL\ _ 0 [L(0S\ ] _p0 (0S\ _ ()
oL j, OL o)1, 0T \OL ) 12 ) |,
where the last step has ysed a Maxwell relation.
(62), - (5s), Goz), -
oL ) ¢ 0S ), \9OL /) CL

where we have used Cp, =T (%)L and (%)T = - (%)L and eqn 17.5.

17.2

17.3 The first two bits are essentially obvious. You can use them to write down Ny = %(1 + ﬁ) Then
use Stirling’s approximation to get
InN!'=NInN - N

and
N L N N N L
InNy!=—(1+-—)ln—+In(1l+ —)] - —(1+-—).
nNet = S (L oln 5+ In(l £ 700 = 5 (14 170
Using In(1 + 2) &~ +x — ’"2—2 + -+, you have
Q=N —-InN,!—InN '—NIHQ—LLQ—Fu-
e 2N?a?

[You miss the factor of two in the last term if you don’t expand In(1 + z) up to z2.]

17.4 If S = S(A,T), then

L a5 [y Ca
dS_<8A>TdA+(aT)AdT_ (aT)AdA+ & dT,

using 17.22. Eqn 17.20 implies that dU = T'dS + vd A and the result follows.

17.5 The number of molecules per unit volume is Nap/M, so at a surface you expect the number per unit
area to go as the 2/3 power of this. Putting in the numbers yields 0.043 eV per molecule, which is
less than 0.45 eV per molecule which is what the latent heat works out as.

17.6 First some thermodynamic potentials:

dU =TdS + fdL and (%)L = ¢(L) where £(L) is a function only of L. Also f = ¢(L)T (because
of the proportionality).

dF = —SdT + fdL and therefore (g—f)T = - (%)L = —¢(L).
dG = —SdT — Ldf and therefore (%)f = (8*? o

Hence

@) (52)r = f+ T (32)r =0

(ii) adiabatic, so dQ = 0 and dU = C,dT = fdL.
Since f, dL, and C, are all positive, dT" > 0.

(iii) (%)f = (%)T - (g%)f (%)s'

Now (g%)f = Cy/T > 0; also (%)S > 0 (from (ii)). Hence (g—L)f < 0 and you get contraction

with warming.

Maybe a better route is to say: (@) = — (@> (a—f) < 0 since (@) > 0 because of elasticity
f of ) L of )

oT oT
and (%)L =¢(L) > 0.

<



Same amount & 9ao

i &2 I’(VP"‘*““+V> = pVa
Ve
AW = j P AV, j Y ah
V|+Vyu'shn s T
0. P grY (R, — Rli)
B fi 4

4 surfaces
YLuS,) add He work dove mgawif fle  adnumipbut

?O[V.L- \/\ - VT\'ﬂ-M_l

18.1 This is just a reading comprehension from the chapter.

18.2 Eqn 16.26 implies that

oG
p
and so BAG

and using dG = V dp — SdT, we can write this as
AG — AH = —TAS. (3)

As T — 0, AS — 0 and so the right-hand side definitely goes to zero, so the left-hand side must as
well.
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Solutions to Part VII-IX




19.1
19.2

19.3

19.4

19.5

19.6

19.7

A trick question. The mean kinetic energy is the same for each case, %kBT = 38 meV.

Cp=Cy+Rand C, = %R = 20.785 (for a gas with only translational modes excited or a monatomic
gas; i.e. Ar, He, Ne, Xe), C), = %R = 29.099 (for a gas with translational and rotational modes
excited; Hg, Na, O2), and Cp, = 3R = 24.94 (for solids, such as Al, Au, Cu, Fe, Pb, Ag and Zn).

Taking the well as a one-dimensional problem, dV/dr = 0 gives a minimum at rgfl = nA/B and
one can Taylor expand around the bottom of this well to show that V = Vi +a(r —r¢)? where a is a
constant. The particle can execute simple harmonic motion around the bottom of this well, giving two
degrees of freedom (one kinetic, one potential), and so the mean thermal energy is 2 x kg7 = kgT.

[o wte 0 ey kT

= e = 5
o e P dey = %8 20y

Writing £ = a|z|, we have dE = adz and dz = o~ ' dE. Hence

(B) = J EePEdx [T EePEdAE
e PEdr [T e PEAE

= kpT.

Writing E = a|x|", we have dE = najz|" ! dx = TTE\ dz and dz = kE# ! dE where & is a constant.
Hence

JoEePBdy  [XEwe PPAE
e B B e RaE

Note, if n = 1 then the answer is

ra+1
e f") = T
NG n

n

(E) =

kT,
in agreement with the previous question. If n = 2 then the answer is

kT
2 )
in agreement with the equipartition theorem.

6+ (g/¢)sinf = 0 and so if § < 1, then we have
0+ w?0=0,

where w? = g/f so that the period is T = 27 /w = 2m\/f/g. If the angle § deviates from zero, the
potential energy increases by
{(1 — cos @) ~ £6%/2,

when 6 < 1. Hence the mean P.E. (using equipartition) is
9 1
(mglf=/2) = §kBT

and hence T
(6%) = >

mgl’
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23.5

23.6

23.7

U=uV,p=u/3 and can write u = (g—U)T =T (g—s)T —-p

(a) so 4u/3T = s and result follows

(b) G=U+PV =TS =uV + 4V -2V =0

(c)use Cy =T (BS) and S = 4uV/3T.

It is maybe quicker to use Cy = (g%) =V (%)V =3V <‘%:)V =3V (g—g)T =3Vs.

(d) G =0s0odG = —SdT 4+ Vdp = 0. Hence s = S/V = dp/dT and therefore at constant p,
since s is non-zero we have that d7" = 0 so that C}, is infinite. There are other ways of achieving
the same result. (e.g. one can write H = U + PV = 4uV/3 and C, = (%)  where constant

p means constant u. You end up evaluating (%)p = (g:’;)v/ (g—"}) , where the denominator
T

(%)T = % (%)T =0)

What’s going on? The pressure in a photon gas depends only on the energy density which depends
only on the temperature. If the constraint is constant pressure, then we must be at constant tem-
perature. (In fact if were to add heat to a photon gas at constant pressure, we would have to let
it expand to take up the extra energy but the temperature would be the same. Adding heat but
producing no change in temperature is an infinite heat capacity!)

Z =11 Z., where Z, is the partition function for one mode. Hence

o 1
an:ZInZw :/0 g(w)dwln |:16ﬁ7‘1<u:|’

and hence the result follows. This can then be integrated by parts, using

3 * * w3 Bhe P (kgT)3 [*° 23dx
21 1— —Bhw dw = il 1— —Bhw _ / i ﬂ _ B /
/Ow n(l —e 7" dw 3 n(l —e ") ) . 3 (=) 3 ), e o1

and the answer then follows. This can then be written as

and use of F = —kgTInZ, S = —pdFTy, U = F + TS and p = —pdFVp produces the rest. The
results clearly satisfy U = —3F, pV =U/3 and S = 4U/3T.

N / wdo V[ widw _V(kBT)3/°° 2% dw
eﬁh“’ -1 723 ), efhe —1  g2a3p3 fy er -1’
and the integral is ¢(3)I'(3) = 2¢(3) and hence the result follows. Now U = 4VoT?/c = 2k VT* /15¢*h> ¢
and hence

U 4
— —— kT = 2.701kgT
N~ 30((3) ®° B
and S = 4U/3T then yields
S ot
— = kg = 3.602kg.
N 45¢(3)"® 3.602kz

The ideal gas is in a limit where there are far far more possible states than particles, permitting
quite a low average energy (1.5kgT per particle) but quite high entropy (S = kg(2.5 — In(nAw)?)
per particle, high if nA, < 1).
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27.1

27.2

27.3

274

(See also 16.2). () (35), =~ (35)y, (36) = ~(1/CVIT (38) — ) and use (35), = () -
(b) (35)5 = %) (83), and use (35), = (%) .
() (22, = — (2% (?TH) (1/Cp)[T (g—i)T—i—V] and use (%)T =—(

(a) Joule expansion; (b) adiabatic expansion; (c) Joule-Kelvin expansion.

Q|
3k

)y

Last bits, use pV = nRT and substitute in. The adiabatic expansion leads to (g—‘T/)S = —p/Cy so
that dT" = —nRTdV/(VCy) and the result follows from integrating. (Remember Cy /n = 3R and
v=3%)

The first part is a standard result.

The inversion curve is given by

ov
(<) —v=o.
(aT)p =0
oA%

Now p is easily made the subject of the equation of state, and the hint says to use (W)p =

(gg) / (%)T which is easily proved from the standard identities for partial differentials which

are in thelr handout. Since
RT bRT a

TV Tvr e
ap\ _R IR
or), VvV V2

Op\ _ _RT 2RI
ov RE V3 V3

then
and

and after some algebra one finds
2a

T=-— =2Tg =38K.
bR~ P

Is it so surprising that the inversion temperature and the Boyle temperature are related? Answer:
not really - because at the Boyle temperature the system behaves like a perfect gas and you get
no J-K cooling for a perfect gas. The Boyle temperature is a characteristic temperature of this
interacting gas and so the fact that the inversion temperature turns out to be a simple multiple of
this is not such a shock.

Again, use (%)p = (gg)v / (%)T and the result then follows after some rather yawn-inducing
algebra.

It’s quite instructive to see what the solution does in high 7" and low 7" limits. It then becomes clear
that the highest inversion temperature must be when p = 0 and hence T' = 2a/bR.

Using
RT
P be—a/RTv7

one can evaluate (g—p) =0 and (aw) = 0 to find the critical points:
T

pe = a/4e’b?; T. = a/4Rb; V. = 2b.

Hence substituting in i )
p = pa/4e*b”; T = Ta/ARb; V=Vv2

to the equation of state, we have




Then use

and algebra leads to

The turning point can be found using dp/dT = 0 which leads to T is —8 (unphysical) or 4.

o
~
P

4

0 =5

0 4" =179

p/Pe
27.5 Look for
<8h>
op )

%0
ﬁ"bc q
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p (atm)

Since hr, = 10.1, hy = 86 (1 atm), and I estimate from the graph that h; = 71 is the minimum
enthalpy, then
hy — h
=—F~02.
R p—



28.1

28.2

28.3

28.4

dp/dT = L/(TAV) (by Clausius-Clapeyron) and AV = pl?ql — p) per ke.

I get dp/dT = 1.25 x 107 Pa K~! and if you increase the pressure by 99 atmospheres (i.e. from 1 to
100 atmospheres) you get AT = 0.75°C so answer is 327.8°C.

Clausius-Clapeyron:

dp L L
dT ~ TAV ~ TV,
where AV =V, -V, = V,, and V,, and V, are the volumes of vapour and liquid respectively. Treating
the vapour as an ideal gas (pV,, = nRT) leads to

p= poe—L/nRT
so that after putting in the numbers, we get the boiling point to be 87.4°C. The tea up there is
dreadful. (We have verified this fact experimentally.)

Clausius-Clapeyron yields dp/dT = L/(TAV) = 1.4 x 107 PaK~.
The heat flow is kdT'/dz = 115 Wm~2 (using dT/dz = 0.5/0.01 = 50K m~!). Divide by the latent

heat of fusion and multiply by the specific volume, yields the rate of ice growth: 3.5x10™"ms~! or

about 3 cm per day.

The word “eventually” signifies steady state, so the heat flux must be the same throughout. Thus
if 1 — x metres is water and x metres is ice, so that the temperature gradient across the ice is 0.5/
and across the water it is 2/(1 — x), we have that
0.5 2
Rice ™ = Rwater7 >
T 1—-=
and this yields x = 0.5 m.

Use L =T(S, — Si) and also

d_0Y) ,d o
dr — or), dT dp),’

Hence
d /L :CPU—CpL+dl 08, B oS,
dT \T T dT op ) op )
and using (g—?)v =— (%)p and ignoring V7, the result follows.

For the next bit, it is helpful to write this in the form
dp (Vo _Cpw—Cpr d (L
ar\or /), T dr \1r)"
(b) Adiabatic implies for the vapour that
oS oS
dS=|—=) dT — | dp=0
(57), 7+ (55),

ds = C’”’dT— <8VU> dp=0
p

T oT

so that
dp _ Gy
- oV, :
T T (52),
Liquid will condense out if this gradient is smaller than the gradient of the phase boundary in the
p-T plane as evaluated by the Clausius Clapeyron equation (remember, we are doing an expansion,
so that p goes down). The gradient evaluated by the Clausius Clapeyron equation is

di’ _ Cpo — CpL _T% (%)

ar T (%#),




based on the arguments in (a). Hence we require that

va < Cp’u - CPL - Td(*l (%)
T (%%), T (%),

d (L
0 < _CPL _Tﬁ (T),

28.5

(v = S

& 1
> |, = 245x 10 T kg
L

L .
Pl s J 2 bqeps g - ;
& G] 2440 % (v

T 1 QQQleOJTL{’
L, =(23%6 -24%) « (0
= SQ?U—kg*'



4 i
dy. ~ %ﬂ-x\og Ty = - 4.8xlo fa¥
= e SN |
AT 113K x 187 o kg
4..

6

—~9°C
d(‘O\D o 2 o [OG ako
= YR e

[————E R

i y=25_8452 — 5301 .97*)(’ r2 = 100.00%

log(p)

0005 T oo0m
1/T 6k

28.6

Even if we go for a very heavy skater (100 kg), only making contact on the ice over an area 10 cm by
Imm (10~*m?), the pressure is only 107 Pa, and the melting line has a gradient 1.4 x 10" Pa (see
previous questions). This is not enough to melt the ice. The two articles quoted in the question are
excellent sources of further information.
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