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7.1 The flux is Φ = 1019 m−2/3600 s. Assuming the residual gas is N2 and T = 300K, then

p = φ
√

2πmkBT ≈ 10−7 Pa ≈ 10−9 mbar

7.2 The mean KE in the gas is 3
2kBT , the mean KE in the beam is the same as the mean KE of those

hitting the surface, i.e. 2kBT (see 2.1(b)), so in the box the temperature will settle to the new value
Tnew given by

3
2
kBTnew = 2kBT,

i.e. Tnew = 4T/3.

7.3 Assume the vapour pressure is constant, so that there is a constant effusion rate. 0.025 Pa.

7.4 f(v) = v3 e−mv2/2kBT , so that 〈v〉 = 3
√

kBTπ
8m = 1.88

√
kBT
m while vmax = 1.73

√
kBT
m .

7.5 θ goes between 0 and θmax ≈ a/d� 1 so that the rate is

n〈v〉A
4

∫ θmax

0

sin 2θ dθ

and hence the result 1
4nA〈u〉(a

2/d2) follows using the small angle approximation.

7.6 This one is spherical geometry. π− ψ+ 2θ = π so ψ = 2θ. The solid angle between ψ and ψ+ dψ is
proportional to sinψ dψ. The number effusing through the hole between θ and θ+dθ is proportional
to cos θ sin θ dθ. Hence the number deposited per solid angle is independent of θ and the coating is
uniform.

7.7 F = pA ≈ 3× 10−7 N.

7.8 p = nkBT and so ṅ = ṗ/kBT . By continuity we have

ṅV = −ΦA,

because the rate of change of number of molecules in the volume is equal to the effusion rate. Hence,
with Φ = p/

√
2πmkBT , we have dp/p = −dt/τ with τ as defined in the question.



8.1 For N2, σ = πd2 = 4.3 × 10−19 m2 (see Example 8.1). Then n = p/kBT with p = 10−10 × 102 Pa.
With 〈v〉 =

√
8kBT/πm = 475m s−1, we then have

• λ = 1/
√

2nσ ≈ 7× 105 m;

• τ = λ/〈v〉 ≈ 25 minutes.

Since the chamber size is 0.5m, then molecules will collide about 106 times more often with the
chamber walls than with each other.

If p is raised by a factor of 104, then λ and τ will go down by a factor of 104.

8.2 P (x) = e−x/λ and so

(a) 〈x2〉 = 2λ2 and xrms =
√

2λ.

(b) dP/dx = 0 leads to x = ∞ (the least probable length) and x = 0 (the most probable length).

(c) (i) 36.8%, (ii) 13.5%, (iii) 0.67%.

8.3 The number hitting a plane is proportional to vg(v) dv cos θ sin θ dθ dφ. Hence

〈x cos θ〉 =

∫∞
0
x e−x/λ

∫
v g(v) dv

∫ π/2

0
cos2 θ sin θ dθ∫∞

0
e−x/λ

∫
v g(v) dv

∫ π/2

0
cos θ sin θ dθ

=
2λ
3
.

8.4 This question should have stated that n = 500 cm−3 so that n = 5 × 108 m−3. In this case, and
estimating σ = π(2a0)2 ≈ 3× 10−20 m2, we have

• 〈v〉 =
√

8kBT/πm ≈ 103 m s−1;

• λ = 1/
√

2nσ ≈ 5× 1010 m;

• τ = λ/〈v〉 ≈1–2 years.



9.1 Although ηwater > ηair, νwater = 10−6 m2 s−1 < νair = 1.3 × 10−6 m2 s−1, so it depends what you
mean by more viscous!

9.2 κ = 1
3Cv〈c〉λ = pλ

√
2kB
πmT .

λ = 2.4× 10−7 m

This leads to dav = 1.93× 10−10 m.

The effective atomic radius r = 1.95× 10−10 m is very similar.

9.3 First part is bookwork. The experiment showed that viscosity was independent of pressure. As you
reduce the pressure, fewer molecules collide, but they have travelled further and hence come from a
region where the transverse momentum is ‘more different’. The experiment would only ‘work’ until
the pressure was so low that λ had reached the dimensions of the apparatus. If this was ∼ 0.1 m,
then this implies p ∼ 0.1 Pa.

9.4 Shear stress is η dv/dr, so considering a small element

dF = (2πr dr) · η · rω
d

and hence

G =
∫ a

0

r dF =
πηωa4

2d
= 2.1× 10−6Nm.

9.5 Expect η ∝
√
T , and η(2000 K)/η(500 K) ≈ 2.3 (whereas it ‘should’ be 2.0), so not bad. The effective

diameter d = (2/3πη)1/2(mkBT/π)1/4 comes out as 0.25 nm at 2000 K and 0.27 nm at 500 K, whereas
the solid Ar value is 0.34 nm. The effective diameter goes down because the molecules are ‘squashy’
and penetrate more into each other when they collide at high speed. [Note: if you use the “corrected”
formula d = (5/16η)1/2(mkBT/π)1/4, the answers become 0.31 nm at 2000 K and 0.33 nm at 500 K.]

9.6 Since Cp = CV + R, we have that CV = CP − R = γCV − R and so (γ − 1)CV = R and the result
follows.

Writing C ′′V = CV − 3
2R, we have that

κ

η
=

15R
4

+ CV −
3
2
R =

9
4

(γ − 1)CV − CV =
1
4

(9γ − 5)CV

Rearranging this we have that

γ =
1
9

(
5 +

4κ
ηCV

)
.

Species κ/(ηCV ) γ
He 2.45 1.64
Ne 2.52 1.68
Ar 2.48 1.66
Kr 2.54 1.68
Xe 2.58 1.70

The results are all clustered around γ = 5/3, not surprising since for a monatomic gas all of the heat
capacity is associated with the translational degrees of freedom for these gases.



10.1 A trial solution of T (x, t) = T (0, 0)ei(kx−ωt) in the one-dimensional thermal diffusion equation

∂T

∂t
=
κ

C

∂2T

∂x2

(where C is a heat capacity per unit volume) yields −iω = κ
C (−k2). In this problem ω must be real

so we write

k = ±(1 + i)

√
ωC

2κ
= ±1 + i

δ

where δ =
√

2κ/ωC is the skin depth. We choose the sign of k to get the right boundary condition:
here positive so that it doesn’t blow up as x→∞. Hence for x ≥ 0 we can write in general

T (x, t) =
∑
ω

Aωe−iωte(i−1)x/δ.

If the boundary condition at the surface is then T (0, t) = T0 + T1 cosωt then matching terms we get

T (x, t) = T0 + T1 cos(ωt− x

δ
)e−x/δ.

Putting in the numbers, for daily fluctuations δ = 0.13 m and the fluctuations in the cellar are
nanoKelvin! Annual fluctuations give δ = 2.5 m and the fluctuations in the cellar come out to about
6◦C. The phase lag can be estimated from the ωt − x

δ term. The minimum will occur at a time t0
when ωt0 = x

δ , so that putting in the numbers I get t0 is about 68–70 days, i.e. in March.

10.2 The thermal diffusion equation corrected for heat generation j2ρ (where j is the current density,
j = I/(πa2)) per unit volume gives ∇2T = −I2ρ/π2a4κ and hence

1
r

d
dr

(
r

dT
dr

)
= − I2ρ

π2a4κ
.

This integrates to

r
dT
dr

= − I2ρr2

2π2a4κ
+ const,

and the constant is clearly zero. Integrating again gives

T = − I2ρr2

4π2a4κ
+ β

where β is a constant.

[A more elegant way of doing this (it saves one integration) is as follows: inside radius r < a the
power generated is j2ρπr2 per unit length; all that power has to move across the surface and so the
heat flux J out of the surface is:

J(r) =
j2ρπr2

2πr
=

1
2
j2ρr = −κdT

dr
.

Hence
dT (r)

dr
= − I2ρr

2π2a4κ
,

and so

T (r) = − I2ρr2

4π2a4κ
+ β

where β is a constant.]

(a) At r = a, T = T0, fixing β and yielding

T (r) = T0 +
ρI2

4π2a4κ
(a2 − r2).



(b) The boundary condition is now

−κ
(

dT
dr

)
r=a

= α(T (a)− Tair),

so that the final answer becomes

T (r) = Tair +
ρI2

4κπ2a4
(a2 − r2) +

I2ρ

2απ2a3
.

10.3 We want to find [T1 − T (0, t)]/[T1 − T0] = 0.1, which implies that

2e−D(π/a)2t = 0.1

and hence D(π/a)2t = ln 20 and the result follows.

10.4 The power coming into a region between x and x+ dx leads to a rate of increase of thermal energy

ρCp

(
∂T

∂t

)
πa2dx.

This is provided by −∇ · (−κ∇T ) (per unit volume) which is a power

κ
∂2T

∂x2
πa2 dx

in one-dimension. However, heat can also be lost via the surface of the wire, leading to a term

−2πadxR(T ).

The result then follows.

In the steady state, ∂T/∂t = 0 and so one has to solve

∂2T

∂x2
=

2A(T − T0)
aκ

.

(a) The solution to this is
T − T0 = Ce

√
αx +De−

√
αx

where C and D are constants and
α =

2A
aκ
.

For an infinite rod, we can neglect the Ce
√
αx term and obtain

T = T0 + (Tm − T0)e−
√
αx

for the boundary conditions.

(b) Either evaluate the total heat loss:∫ ∞
0

A(T − T0) 2πadx = 2πaA(Tm − T0)
∫ ∞

0

e−
√
αx dx = πa3/2(Tm − T0)

√
2κA,

or evaluate the heat transported at x = 0,

−κ
(
∂T

∂x

)
x=0

πa2 = κ
√
α(Tm − T0)πa2 = πa3/2(Tm − T0)

√
2κA.

This all fails for finite rods since you cannot then neglect the other term in the solution. It will work
well enough if the rods are longer than a few diffusion lengths, where δ = 1/

√
α =

√
aκ
2A is about 3

cm, so maybe something over 10 cm should be OK for things to be correct at the 5% level.



10.5 (δv/δ)2 = ηcp/κ = σp

10.6 Since iω = Dk2, |dω/dk| = 2Dk and this can go to infinity when you consider waves with wavelengths
going to zero.

∑
k

h̄ωkτ ṅvi = −
∑
k

∑
j

h̄ωkτvj
δn

δxi
vi −

∑
k

h̄ωkvi(n− n0)

and so this can be rewritten

Ji + τ J̇i = −
∑
k

∑
j

h̄ωkτvjvi
δn

δT

δT

δxi
.

In an isotropic system one has

Ji + τ J̇i = −κ δT
δxi

.

where
κ =

1
3

∑
k

h̄ωkτv
2 δn

δT
.

For more details, see S. Simons, Am. J. Phys. 54, 1048 (1986).

10.7 Heat flux is the same throughout and hence

κi
∆Ti
∆xi

= J

and Ti − Tf =
∑

∆Ti = J
∑
i ∆xi/κi.

10.8 In cylindrical geometry, we have that
∂

∂r

(
r
∂T

∂r

)
= 0

and hence
r
∂T

∂r
= const

and so
∂T

∂r
=

const
r

.

Hence
T2 − T1 =

∫ r2

r1

constdr
r

= const ln
r2
r1
,

which fixes the value of the const. At r = r1, we can write

J = −κ∂T
∂r

= −κconst
r1

=
κ(T1 − T2)
r1 ln(r2/r1)

.

Hence the heat flow per unit length, which is 2πr1J is given by

2πκ(T1 − T2)
ln(r2/r1)

.

10.9
∂T

∂r
=

const
r

and so as before we can write
Tr − T = const ln

r

R
,

where Tr is the temperature at the surface of the lagging. The value of the heat flow at the surface
of the pipes is

JR = −κconst
R

,



while by Newton’s law of cooling we must have, at the surface of the lagging,

Jr = h(Tr − Ta),

where Ta is the temperature of the ambient air. The heat flow per unit length, q/L, can therefore
be written as

q

L
= −κconst

R
2πR = −2πκconst,

and also as
q

L
= h(Tr − Ta)2πr.

Putting these equations together gives

q

L
= 2πhr

(
T +

q ln(r/R)
−2πκL

− Ta
)
,

and hence
q

L
=

2π(T − Ta)
1
hr + 1

κ ln(r/R)
,

as required. The denominator goes through a minimum (which can be found by differentiating by r)
at r = κ/h. When r is smaller, lagging doesn’t help. Since we are dealing with thin lagging, r is very
close to R (and of course can’t be smaller – you can’t have negative lagging!); hence the condition is
also a condition on R.



11.1 For an ideal gas,
(
∂U
∂V

)
T

= 0 and hence U doesn’t change.

∆W =
∫ V2

V1

(−p dV =
∫ V2

V1

−RT0 dV
V

= −RT0 ln(V2/V1).

The work done by the gas is RT0 ln(V2/V1).

The heat flow into the gas is RT0 ln(V2/V1), since ∆U = 0.

11.2 R = CV − Cp and hence

• dividing by CV yields R/CV = γ − 1;

• dividing by Cp yields R/Cp = 1− (1/γ).

11.3 If f = x2y + y2, then ∂f
∂x = 2xy and ∂f

∂y = x2 + 2y. It is an exact differential. Both methods of
integration lead to

x2
2y2 − y1x2

1 + y2
2 − y2

1 .

11.4 The problem here is that the question has been (deliberately) misleading about writing down which
variables are held constant. One can think of x as a function of r and θ, i.e. x = x(r, θ), so from the
equation

x = r cos θ,

it follows that (
∂x

∂r

)
θ

= cos θ =
x

r
.

One can also think of x = x(y, r) from the equation

x2 = r2 − y2,

in which case

2x
(
∂x

∂r

)
y

= 2r =⇒
(
∂x

∂r

)
y

=
r

x
.

Hence what is actually true is that (
∂x

∂r

)
θ

=
(
∂r

∂x

)
y

.

Moral of the story: Think carefully about what is being held constant in a partial derivative.

11.5 No. Work can be converted into heat. Heat can be partially converted into work. They are not the
same thing.



12.1 Start with pV γ is constant and then substitute in pV ∝ T .

12.2 The first two equations come from straightforward differentiation and then the second two follow
from the definitions Cp =

(
∂Q
∂T

)
p

and CV =
(
∂Q
∂T

)
V

. In an adiabatic change dQ = 0 and so one can

write
dp
dV

= −
(
∂Q

∂V

)
p

(
∂p

∂Q

)
V

= − Cpp

df/dT

df/dT

V CV
= − Cpp

VV V
,

and hence
dp
p

= −γ dV
V
,

and the result follows.

12.3 When T is constant, dT = 0 and hence (
∂p

∂V

)
T

=
B

A
.

Now if d̄Q = 0, the first two equations immediately yield

dp = −(Cp/A)dT,
dV = −(CV /B)dT.

Hence (
∂p

∂V

)
adiabatic

= γ

(
∂p

∂V

)
T

.

If p is constant, then we have Cp − CV = B
(
∂V
∂T

)
p

and hence use of dV = −(CV /B)dT yields(
∂V

∂T

)
adiabatic

= −CV
B

=
1

1− γ

(
∂V

∂T

)
p

.

If V is constant, then we have Cp − CV = −A
(
∂p
∂T

)
V

and hence use of dp = −(Cp/A)dT yields(
∂p

∂T

)
adiabatic

= −Cp
A

=
γ

γ − 1

(
∂p

∂T

)
V

.

12.4 The adiabat has a steeper gradient by a factor of γ.

12.5 Do all calculations with one mole of gas without loss of generality.

(a) Cylinders thermally insulated so that d̄Q = 0. Hence CV dT = −pdV = −(RT/V )dV and hence
CV lnT = −R lnV+const, and hence Tf = Ti/22/3 where Tf is the final temperature.

(b) Initially have pV = RTi and finally have p(V + v) = RTf where v is the volume in A after you
have pushed it as far as it will go. The work done on the gas is then p(V − v) = CV (Tf − Ti) where
the last equality follows from d̄Q = 0. These can be solved to give Tf = 7Ti/5.

12.6 The change is adiabatic, so that
dp
p

= −γ dV
V
. (1)

If the ball moves up a distance x, then dV = Adx and the extra force on the ball is Adp = mẍ and
so

mẍ+ kx = 0,

where

k =
A2pγ

V



and hence simple harmonic oscillation results with

ω2 =
A2pγ

mV
,

and the period τ = 2π/ω results.

In Rinkel’s modification, one equates gravitational PE with “spring” energy, so that

mgL =
1
2
k(L/2)2 =

γpA2L2

8V
.

(Note that in this case the amplitude of the oscillation is L, which is from −L/2 to L/2, so the stored
“spring” energy is 1

2k(L/2)2.)



13.1 No: consider the definition of efficiency for a heat pump.

13.2 η = 1− 273/373 = 0.27.

13.3 Law I, Law II respectively.

13.4 Label the points A: (p1, V1, TA), B: (p1, V2, TB) and C: (p2, V2, TC). The heat out on the isobar
AB is Q1 = Cp(TA − TB) = γCV (TA − TB) as you cool, while the heat in on the isochore BC
is Q2 = CV (TC − TB), and no heat is transferred on the adiabat CA. Hence using PV ∝ T , the
efficiency is η = W/Q2 = 1−Q1/Q2 = 1−γ(TA−TB)/(TC−TB) = 1−γ(p1V1−p1V2)/(p2V2−p1V2)
which gives the final result.

13.5 Q1 = CV (T3−T2) and Q2 = CV (T4−T1) and pV γ is constant on an adiabat (in this case it’s better
to use TV γ−1 is constant). η = 1−Q2/Q1. The result follows after some algebra.

13.6 In steady state Q = Q2.

The 1st law implies E +Q2 = Q1.

Carnot implies: Q1/T1 = Q2/T2.

Eliminate Q, Q1 and Q2 from these equations, for example by putting the third one into the second
one and yielding

E +Q2 = Q2T1/T2

which you can use to show that

E = A(T1 − T2)(T1/T2 − 1) =
A

T2
(T1 − T2)2

This can be expanded to give a quadratic in T2:

T 2
2 − (2T1 + E/A)T2 + T 2

1 = 0

which has solutions

T2 = T1 +
E

2A
±

√(
E

2A

)2

+
ET1

A
.

Thus for 30% of Emax you need

0.3Emax =
A

293
102

and for 100% of Emax you need

Emax =
A

293
(∆T )2

so that T1 = 20◦ + ∆T = 38.3◦C.

13.7 The energy available from body 1 is Cp(T1 − Tf ). The energy available from body 2 is Cp(T2 − Tf ).
Hence W = Cp (T1 + T2 − 2Tf ).

The most efficient engine is reversible and so using the Clausius theorem, the integral round a closed
loop of d̄Q/T is zero, and hence

∫ Tf

T1
CpdT/T +

∫ Tf

T2
CpdT/T = 0 and the result follows. (This result

can equivalently be derived by stating ∆S = 0, using the entropy S defined in the following chapter.)

13.8 In the steady state α(T − T0) is balanced by the heat power coming from the heat pump, call it
Q2 = W +Q1 where Q1 is the heat power extracted from the river. The efficiency

η =
Q2

W
=

T

T − T0
,

so rearranging gives

α(T − T0) =
TW

T − T0

and hence TW = α(T − T0)2 which is a quadratic in T . Easiest perhaps to solve for t = T − T0 so
that t2 − tW/α − T0W/α = 0 and the result follows (use the positive root of the quadratic or you
have a cooling effect and in this country we tend to think of needing to keep our houses warmed not
cooled).



13.9 To save writing lots of zeros, I will measure temperature in units of 100 K. In these units we have
temperatures as follows:

initially: 3, 3, 1

finally: T1, T1, T2

Energy conservation implies that 2T1 + T2 = 7.

Connecting them with reversible heat engines implies that 2 lnT1 + lnT2 = 2 ln 3 + ln 1 and so
T 2

1 T2 = 9. Putting this altogether gives a cubic T 3
1 − 7

2T
2
1 + 9

2 = 0.

This could be nasty to solve, except that a solution must be T1 = 3 (when you connect up the
reversible engines but run them for zero time!) so therefore you know one root. Hence (T1− 3)(T 2

1 +
αT1+β) = 0 and equating coefficients you can deduce α and β and arrive at (T1−3)(T1− 3

2 )(T1+1) = 0
so the other positive root is T1 = 3

2 (or 150 K in proper units) and hence T2 = 4 (or 400 K in proper
units).

13.10
τdiffuse ∝ L2

τmechanical ∝ L

For big engines τdiffuse � τmechanical, and heat engines work as expected. Thermal gradients persist
(they do not diffuse away) and mechanical work can be extracted from them.

For small engines τdiffuse � τmechanical, and thermal gradients diffuse away before you can exploit
them.



14.1 ∆S = −
∫ 363

291
CdT
T = −C ln(363/291) = −185.7 J K−1. It is negative but the entropy in the sur-

roundings changes by C(363 − 291)/291 = +207.8 J K−1 which is positive and larger. Hence the
entropy of the Universe goes up.

14.2 Yes: see the box on page 142.

14.3 (a) ∆S = 0 because T is constant.

(b) I2Rt = 3× 104 J flows into the environment. Hence ∆S = 3× 104/300 = 100 J K−1.

14.4 (a) ∆Sbath = C ln 353/293 = 1.9 kJ K−1.

(b) ∆Sres = C(293− 353)/353 = −1.7 kJ K−1.

(c) Zero, because reversible.

14.5 (a) ∆Stotal = −
∫ 200

100
CV dT/T +

∫ 200

100
CV dT/100 = −CV ln 2 + CV = CV (1− ln 2) = 0.307 J K−1.

(b) ∆Stotal = −
∫ 200

100
CV dT/T +

∫ 200

150
CV dT/150 +

∫ 150

100
CV dT/100 = −CV ln 2 + CV (1/3 + 1/2) =

0.14 J K−1.

Last bit:

∆Stotal = −
∫ 200

100
CV dT/T +

(∫ 200

200−δ CV dT/(200− δ) +
∫ 200−δ

200−2δ
CV dT/(200− 2δ) + · · ·

)
= 0.

14.6 (a) ∆SUniverse = 1
2CV

2/273 = 18.3 µJ K−1 because QV work is done by the battery and only
1
2QV = 1

2CV
2 is stored in the capacitor, so that 1

2QV = 1
2CV

2 is heat in the battery.

(b) ∆SUniverse = 1
2CV

2/273 = 18.3 µJ K−1 again because now the stored energy in the capacitor
becomes heat in the resistor.

(c) dU = 0 so d̄W = −RT ln 2 = −d̄Q. Hence ∆Sgas = R ln 2, but ∆Ssurroundings = −R ln 2 so
∆Suniverse = 0.

(Or quicker, reversible implies ∆Suniverse = 0.)

(d) dQ = 0 so ∆Sgas = ∆Ssurroundings = 0 so ∆Suniverse = 0.

(Or quicker, reversible implies ∆Suniverse = 0.)

(e) Joule expansion, ∆Sgas = R ln 2, ∆Ssurroundings = 0, so ∆Suniverse = R ln 2 = 5.76 J K−1.

14.7 (a) dU = 0 because dT = 0 and hence TdS = pdV . Hence

∆S =
∫ αV

V

pdV
T

= nR

∫ αV

V

dV
V

= nR lnα.

(b) S is a function of state, hence it does not depend on which route:

∆S = nR lnα.

For the van der Waals gas [and on reflection, this part of the question may be a bit too hard for a
student at this stage without reading ahead!],

dS =
(
∂S

∂T

)
V

dT +
(
∂S

∂V

)
T

dV.

Since dT = 0, we only need to worry about the second term, and in fact we can write this as

dS =
(
∂p

∂T

)
V

dV.

Hence

∆S =
∫ αV

V

(
∂p

∂T

)
V

dV =
∫ αV

V

nRdV
V − nb

= nR ln
(
αV − nb
V − nb

)
.

In case (b), the temperature changes by

∆T = − 1
CV

∫ αV

V

[
T

(
∂p

∂T

)
V

− p
]

= − an2

CV V

(
α− 1
α

)
.



14.8 S/kB = −
∑
i Pi lnPi = −

∑
i Pi(−βEi − lnZ) = lnZ + βU.

14.9 S/kB = −
∑
i Pi lnPi. With N molecules and probability p2 = x that a molecule is type 1 and

probability P2 = 1− x that it is type 2, we have that

S/NkB = −x lnx− (1− x) ln(1− x).



15.1 C = 5×10−15 F and V = 3V gives 1
2CV

2 = 1.4×105 eV which is much larger than kBT ln 2 ≈ 0.02 eV.

15.2 (a) S = −
∑
i Pi log2 Pi = − 1

4 log2
1
4

1
4 log2

1
4 −

1
4 log2

1
4 −

1
4 log2

1
4 = log2 4 = 2 bits.

(b) S = −
∑
i Pi log2 Pi = − 1

4 log2
1
4

1
4 log2

1
4 −

1
2 log2

1
2 = 3

2 bits. Information has been lost. The gate
is not reversible.

15.3 Set k = 1 and use Lagrange multipliers.

S = −
∑
i

Pi lnPi − α
∑
i

Pi − β
∑
i

Pif(xi)

and differentiate with respect to Pj , yielding

− lnPj − 1− α− βf(xj) = 0

and hence
Pj = e−1−αe−βf(xj).

The first exponential can be got rid off by using the constraint that
∑
Pi = 1 and writing the answer

as
Pj =

1
Z(β)

e−βf(xj)

with Z(β) as defined in the question. The final result follows straightforwardly from

〈f(xj)〉 =
∑
j

f(xj)Pj .

15.4 Straightforward argument.

15.5 (a)

−S(P ||Q) = −
∑
i

Pi log
Pi
Qi

=
∑
i

Pi log
Qi
Pi
≤
∑
i

Pi(Qi/Pi − 1),

using the fact that log x ≤ x− 1. Hence

−S(P ||Q) ≤
∑
i

Pi(Qi/Pi − 1) =
∑
i

Qi − Pi =
∑
i

Qi −
∑
i

Pi = 0.

(b) Eqn 15.20 implies that

S(P ||Q) = −SP −
∑
i

Pi log(1/N) = −SP − log(1/N)
∑
i

Pi = −Sp + logN.

Since S(P ||Q) ≥ 0, then SP ≤ logN .

15.6 This is the “Monty Hall problem” and is a deceptively hard question. Many people think that it
doesn’t make any difference, but it does. She should swap.
The easiest way of seeing this is to say, for the sake of argument, that the contestant chooses door
number one. Then there are three possibilities:

• The car is behind door number one: the host will open door number two or three to reveal a
goat. In this case, swapping is the wrong thing to do and will lead to LOSING the car.
• The car is behind door number two: the host will open door number three to reveal a goat. In

this case, swapping is the right thing to do and will lead to WINNING the car.
• The car is behind door number three: the host will open door number two to reveal a goat. In

this case, swapping is the right thing to do and will lead to WINNING the car.

The probability that she picked the right door first time was 1/3. With the additional information
given, the probability that the car is behind the other, unopened door, is now 2/3.
[If a student doesn’t get this, try the following variant of the problem: you have 100 doors, 99 of
which conceal a goat and only one the car. The contestant makes a choice, and the game show host
opens 98 of the other doors to reveal a goat behind which. Now the car can either be behind the
door the contestant chose or the other non-opened door. It’s now pretty obvious that the contestant
should switch.]



16.1 Bookwork: H = U + PV , F = U − TS, G = H − TS and so

dU = TdS − pdV
dH = TdS + V dp
dF = −SdT − pdV
dG = −SdT + V dp

and (
∂T

∂V

)
S

= −
(
∂p

∂S

)
V(

∂T

∂p

)
S

=
(
∂V

∂S

)
p(

∂S

∂V

)
T

=
(
∂p

∂T

)
V(

∂S

∂p

)
T

= −
(
∂V

∂T

)
p

16.2 (a) (i)
(
∂T
∂V

)
U

= −
(
∂T
∂U

)
V

(
∂U
∂V

)
T

= −(1/CV )[T
(
∂S
∂V

)
T
− p] and use

(
∂S
∂V

)
T

=
(
∂p
∂T

)
V

.

(ii)
(
∂T
∂V

)
S

= −
(
∂T
∂S

)
V

(
∂S
∂V

)
T

and use
(
∂S
∂V

)
T

=
(
∂p
∂T

)
V

.

(iii)
(
∂T
∂V

)
H

= −
(
∂T
∂H

)
p

(
∂H
∂p

)
T

= (1/Cp)[T
(
∂S
∂p

)
T

+ V ] and use
(
∂S
∂p

)
T

= −
(
∂V
∂T

)
p
.

(i) Joule expansion; (ii) adiabatic expansion; (iii) Joule-Kelvin expansion.

(b) use pV = nRT and substitute in. The adiabatic expansion leads to
(
∂T
∂V

)
S

= −p/CV so that
dT = −nRTdV/(V CV ) and the result follows from integrating. (Remember CV /n = 3

2R and γ = 5
3 .)

16.3 dU = d̄W + d̄Q = −pdV + d̄Q =
(
∂U
∂T

)
V

dT +
(
∂U
∂V

)
T

dV. and so rearranging gives

d̄Q =
(
∂U

∂T

)
V

dT +
[(

∂U

∂V

)
T

+ p

]
dV

We therefore can write

Cp =
(
∂Q

∂T

)
p

=
(
∂U

∂T

)
V

+
[(

∂U

∂V

)
T

+ p

](
∂V

∂T

)
p

and use

βp =
(

1
V

)(
∂V

∂T

)
p

and CV =
(
∂U

∂T

)
V

and the result follows.

16.4 (a) U = U(S, V ) and so dU = T dS − p dV and hence

T =
(
∂U

∂S

)
V

and

p = −
(
∂U

∂V

)
S

.

(b) If U = U(T, V ), then (
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p,



and so
1
T 2

(
∂U

∂V

)
T

=
(
∂(P/T )
∂T

)
V

,

and integrating yields
p

T
=
∫ (

∂U

∂V

)
T

dT
T 2

+ f(V ),

where f(V ) is an unknown function of V .

16.5 This follows from the previous question. If U = U(T, V ), then we can write(
∂U

∂V

)
T

= T

(
∂p

∂T

)
V

− p,

and the result follows.

16.6 Eqn 16.82 gives us S = CV lnT +R lnV + constant. Using pV = RT for one mole and Cp = CV +R
yields the result.

16.7 Eqn 16.82 gives us S = CV lnT +R lnV + constant. Using pV = RT for one mole gives

S = CV ln(pV ) +R lnV + constant

and hence
S = CV ln(pV 1+R/CV ) + constant

which implies
S = CV ln(pV γ) + constant.

Now ρ = M/V where M is the total mass, so ln ρ = − lnV + constant and hence the result follows.
Note the constants in these equations are not all the same.



17.1 (
∂CL
∂L

)
T

=
∂

∂L

[
T

(
∂S

∂T

)
L

]
T

= T
∂

∂T

(
∂S

∂L

)
T

= −T
(
∂2f

∂T 2

)
L

,

where the last step has ysed a Maxwell relation.

17.2 (
∂T

∂L

)
S

= −
(
∂T

∂S

)
L

(
∂S

∂L

)
T

= −TAETαf
CL

where we have used CL = T
(
∂S
∂T

)
L

and
(
∂S
∂L

)
T

= −
(
∂f
∂T

)
L

and eqn 17.5.

17.3 The first two bits are essentially obvious. You can use them to write down N± = N
2 (1± L

Na ). Then
use Stirling’s approximation to get

lnN ! = N lnN −N

and
lnN±! =

N

2
(1± L

Na
)[ln

N

2
+ ln(1± N

La
)]− N

2
(1± L

Na
).

Using ln(1± x) ≈ ±x− x2

2 + · · ·, you have

ln Ω = lnN !− lnN+!− lnN−! = N ln 2− NL2

2N2a2
+ · · ·

[You miss the factor of two in the last term if you don’t expand ln(1 + x) up to x2.]

17.4 If S = S(A, T ), then

dS =
(
∂S

∂A

)
T

dA+
(
∂S

∂T

)
A

dT = −
(
∂γ

∂T

)
A

dA+
CA
T

dT,

using 17.22. Eqn 17.20 implies that dU = T dS + γdA and the result follows.

17.5 The number of molecules per unit volume is NAρ/M , so at a surface you expect the number per unit
area to go as the 2/3 power of this. Putting in the numbers yields 0.043 eV per molecule, which is
less than 0.45 eV per molecule which is what the latent heat works out as.

17.6 First some thermodynamic potentials:

dU = TdS + fdL and
(
∂f
∂T

)
L

= ξ(L) where ξ(L) is a function only of L. Also f = ξ(L)T (because

of the proportionality).

dF = −SdT + fdL and therefore
(
∂S
∂L

)
T

= −
(
∂f
∂T

)
L

= −ξ(L).

dG = −SdT − Ldf and therefore
(
∂L
∂T

)
f

=
(
∂S
∂f

)
T

.

Hence

(i)
(
∂U
∂L

)
T

= f + T
(
∂S
∂L

)
T

= 0.

(ii) adiabatic, so d̄Q = 0 and dU = CLdT = fdL.

Since f , dL, and CL are all positive, dT > 0.

(iii)
(
∂L
∂T

)
f

=
(
∂S
∂f

)
T

= −
(
∂S
∂T

)
f

(
∂T
∂f

)
S

.

Now
(
∂S
∂T

)
f

= Cf/T > 0; also
(
∂T
∂f

)
S
> 0 (from (ii)). Hence

(
∂L
∂T

)
f
< 0 and you get contraction

with warming.

Maybe a better route is to say:
(
∂L
∂T

)
f

= −
(
∂L
∂f

)
T

(
∂f
∂T

)
L
< 0 since

(
∂L
∂f

)
T
> 0 because of elasticity

and
(
∂f
∂T

)
L

= ξ(L) > 0.



17.7

18.1 This is just a reading comprehension from the chapter.

18.2 Eqn 16.26 implies that

G−H = T

(
∂G

∂T

)
p

, (1)

and so

∆G−∆H = T

(
∂∆G
∂T

)
p

, (2)

and using dG = V dp− S dT , we can write this as

∆G−∆H = −T∆S. (3)

As T → 0, ∆S → 0 and so the right-hand side definitely goes to zero, so the left-hand side must as
well.
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Solutions to Part VII–IX



19.1 A trick question. The mean kinetic energy is the same for each case, 3
2kBT = 38 meV.

19.2 Cp = CV +R and Cp = 5
2R = 20.785 (for a gas with only translational modes excited or a monatomic

gas; i.e. Ar, He, Ne, Xe), Cp = 7
2R = 29.099 (for a gas with translational and rotational modes

excited; H2, N2, O2), and Cp = 3R = 24.94 (for solids, such as Al, Au, Cu, Fe, Pb, Ag and Zn).

19.3 Taking the well as a one-dimensional problem, dV/dr = 0 gives a minimum at rn−1
0 = nA/B and

one can Taylor expand around the bottom of this well to show that V = V0 +α(r− r0)2 where α is a
constant. The particle can execute simple harmonic motion around the bottom of this well, giving two
degrees of freedom (one kinetic, one potential), and so the mean thermal energy is 2× 1

2kBT = kBT .

19.4

〈x2
i 〉 =

∫∞
−∞ x2

i e
−βαix

2
i dxi∫∞

−∞ e−βαix2
i dxi = 1

2αiβ

=
kBT

2αi
.

19.5 Writing E = α|x|, we have dE = α dx and dx = α−1 dE. Hence

〈E〉 =

∫∞
0
Ee−βE dx∫∞

0
e−βE dx

=

∫∞
0
E e−βE dE∫∞

0
e−βE dE

= kBT.

19.6 Writing E = α|x|n, we have dE = nα|x|n−1 dx = nE
|x| dx and dx = κE

1
n−1 dE where κ is a constant.

Hence

〈E〉 =

∫∞
0
Ee−βE dx∫∞

0
e−βE dx

=

∫∞
0
E

1
n e−βE dE∫∞

0
E

1
n−1e−βE dE

= kBT
Γ(1 + 1

n )
Γ( 1

n )
=
kBT

n
.

Note, if n = 1 then the answer is
kBT,

in agreement with the previous question. If n = 2 then the answer is

kBT

2
,

in agreement with the equipartition theorem.

19.7 θ̈ + (g/`) sin θ = 0 and so if θ � 1, then we have

θ̈ + ω2θ = 0,

where ω2 = g/` so that the period is T = 2π/ω = 2π
√
`/g. If the angle θ deviates from zero, the

potential energy increases by
`(1− cos θ) ≈ `θ2/2,

when θ � 1. Hence the mean P.E. (using equipartition) is

〈mg`θ2/2〉 =
1
2
kBT

and hence
〈θ2〉 =

kBT

mg`
.

















23.5 U = uV , p = u/3 and can write u =
(
∂U
∂V

)
T

= T
(
∂S
∂V

)
T
− p

(a) so 4u/3T = s and result follows

(b) G = U + PV − TS = uV + u
3V −

4u
3 V = 0

(c) use CV = T
(
∂S
∂T

)
V

and S = 4uV/3T .

It is maybe quicker to use CV =
(
∂U
∂T

)
V

= V
(
∂u
∂T

)
V

= 3V
(
∂p
∂T

)
V

= 3V
(
∂S
∂V

)
T

= 3V s.

(d) G = 0 so dG = −SdT + V dp = 0. Hence s = S/V = dp/dT and therefore at constant p,
since s is non-zero we have that dT = 0 so that Cp is infinite. There are other ways of achieving
the same result. (e.g. one can write H = U + PV = 4uV/3 and Cp =

(
∂H
∂T

)
p

where constant

p means constant u. You end up evaluating
(
∂V
∂T

)
p

= −
(
∂p
∂T

)
V
/
(
∂p
∂V

)
T

, where the denominator(
∂p
∂V

)
T

= 1
3

(
∂u
∂V

)
T

= 0.)

What’s going on? The pressure in a photon gas depends only on the energy density which depends
only on the temperature. If the constraint is constant pressure, then we must be at constant tem-
perature. (In fact if were to add heat to a photon gas at constant pressure, we would have to let
it expand to take up the extra energy but the temperature would be the same. Adding heat but
producing no change in temperature is an infinite heat capacity!)

23.6 Z =
∏
Zω where Zω is the partition function for one mode. Hence

lnZ =
∑

lnZω =
∫ ∞

0

g(ω) dω ln
[

1
1− e−βh̄ω

]
,

and hence the result follows. This can then be integrated by parts, using∫
0

ω2 ln(1− e−βh̄ω) dω =
[
ω3

3
ln(1− e−βh̄ω)

]∞
0

−
∫ ∞

0

ω3

3
βh̄e−βh̄ω

(1− e−βh̄ω)
= − (kBT )3

3h̄3

∫ ∞
0

x3 dx

ex − 1
,

and the answer then follows. This can then be written as

lnZ =
4σV
3kBc

T 3,

and use of F = −kBT lnZ, S = −pdFTV , U = F + TS and p = −pdFVT produces the rest. The
results clearly satisfy U = −3F , pV = U/3 and S = 4U/3T .

23.7

N =
∫ ∞

0

g(ω) dω
eβh̄ω − 1

=
V

π2c3

∫ ∞
0

ω2 dω
eβh̄ω − 1

=
V (kBT )3

π2c3h̄3

∫ ∞
0

x2 dω
ex − 1

,

and the integral is ζ(3)Γ(3) = 2ζ(3) and hence the result follows. Now U = 4V σT 4/c = π2k4
BV T

4/15c2h̄3c
and hence

U

N
=

π4

30ζ(3)
kBT = 2.701kBT,

and S = 4U/3T then yields
S

N
=

2π4

45ζ(3)
kB = 3.602kB.

The ideal gas is in a limit where there are far far more possible states than particles, permitting
quite a low average energy (1.5kBT per particle) but quite high entropy (S = kB(2.5 − ln(nλth)3)
per particle, high if nλ3

th � 1).

















27.1 (See also 16.2). (a)
(

∂T
∂V

)
U

= −
(

∂T
∂U

)
V

(
∂U
∂V

)
T

= −(1/CV )[T
(

∂S
∂V

)
T
− p] and use

(
∂S
∂V

)
T

=
(

∂p
∂T

)
V

.

(b)
(

∂T
∂V

)
S

= −
(

∂T
∂S

)
V

(
∂S
∂V

)
T

and use
(

∂S
∂V

)
T

=
(

∂p
∂T

)
V

.

(c)
(

∂T
∂V

)
H

= −
(

∂T
∂H

)
p

(
∂H
∂p

)
T

= (1/Cp)[T
(

∂S
∂p

)
T

+ V ] and use
(

∂S
∂p

)
T

= −
(

∂V
∂T

)
p
.

(a) Joule expansion; (b) adiabatic expansion; (c) Joule-Kelvin expansion.

Last bits, use pV = nRT and substitute in. The adiabatic expansion leads to
(

∂T
∂V

)
S

= −p/CV so
that dT = −nRTdV/(V CV ) and the result follows from integrating. (Remember CV /n = 3

2R and
γ = 5

3 .)

27.2 The first part is a standard result.

The inversion curve is given by

T

(
∂V

∂T

)
P

− V = 0.

Now p is easily made the subject of the equation of state, and the hint says to use
(

∂V
∂T

)
p

=

−
(

∂p
∂T

)
V

/
(

∂p
∂V

)
T

which is easily proved from the standard identities for partial differentials which
are in their handout. Since

p =
RT

V
+

bRT

V 2
− a

V 2

then (
∂p

∂T

)
V

=
R

V
+

bR

V 2

and (
∂p

∂V

)
T

= −RT

V 2
− 2bRT

V 3
+

2a

V 3

and after some algebra one finds

T =
2a

bR
= 2TB = 38K.

Is it so surprising that the inversion temperature and the Boyle temperature are related? Answer:
not really - because at the Boyle temperature the system behaves like a perfect gas and you get
no J-K cooling for a perfect gas. The Boyle temperature is a characteristic temperature of this
interacting gas and so the fact that the inversion temperature turns out to be a simple multiple of
this is not such a shock.

27.3 Again, use
(

∂V
∂T

)
p

= −
(

∂p
∂T

)
V

/
(

∂p
∂V

)
T

and the result then follows after some rather yawn-inducing
algebra.

It’s quite instructive to see what the solution does in high T and low T limits. It then becomes clear
that the highest inversion temperature must be when p = 0 and hence T = 2a/bR.

27.4 Using

p =
RT

V − b
e−a/RTV ,

one can evaluate
(

∂p
∂V

)
T

= 0 and
(

∂2p
∂V 2

)
T

= 0 to find the critical points:

pc = a/4e2b2; Tc = a/4Rb; Vc = 2b.

Hence substituting in
p = p̃a/4e2b2; T = T̃ a/4Rb; V = Ṽ 2b

to the equation of state, we have

P̃ (2Ṽ − 1) = T̃ exp
[
2
(

1− 1
T̃ Ṽ

)]
.



Then use (
∂Ṽ

∂T̃

)
p̃

= −
(

∂p̃

∂T̃

)
Ṽ

/

(
∂p̃

∂Ṽ

)
T̃

and algebra leads to

P̃ = (8− T̃ ) exp
[
5
2
− 4

T̃

]
The turning point can be found using dp̃/dT̃ = 0 which leads to T̃ is −8 (unphysical) or 4.

27.5 Look for (
∂h

∂p

)
T

= 0.

Since hL = 10.1, hf = 86 (1 atm), and I estimate from the graph that hi = 71 is the minimum
enthalpy, then

α =
hf − hi

hf − hL
∼ 0.2.



28.1 dp/dT = L/(T∆V ) (by Clausius-Clapeyron) and ∆V = ρ−1
liq − ρ−1

sol per kg.

I get dp/dT = 1.25× 107 Pa K−1 and if you increase the pressure by 99 atmospheres (i.e. from 1 to
100 atmospheres) you get ∆T = 0.75◦C so answer is 327.8◦C.

28.2 Clausius-Clapeyron:
dp

dT
=

L

T∆V
≈ L

TVv

where ∆V = Vv−VL ≈ Vv and Vv and VL are the volumes of vapour and liquid respectively. Treating
the vapour as an ideal gas (pVv = nRT ) leads to

p = p0e−L/nRT

so that after putting in the numbers, we get the boiling point to be 87.4◦C. The tea up there is
dreadful. (We have verified this fact experimentally.)

28.3 Clausius-Clapeyron yields dp/dT = L/(T∆V ) = 1.4× 107 PaK−1.

The heat flow is κdT/dz = 115W m−2 (using dT/dz = 0.5/0.01 = 50Km−1). Divide by the latent
heat of fusion and multiply by the specific volume, yields the rate of ice growth: 3.5×10−7 m s−1 or
about 3 cm per day.

The word “eventually” signifies steady state, so the heat flux must be the same throughout. Thus
if 1− x metres is water and x metres is ice, so that the temperature gradient across the ice is 0.5/x
and across the water it is 2/(1− x), we have that

κice
0.5
x

= κwater
2

1− x
,

and this yields x = 0.5 m.

28.4 Use L = T (Sv − SL) and also
d

dT
=

∂

∂T

)
P

+
dp

dT

∂

∂p

)
T

.

Hence
d

dT

(
L

T

)
=

Cpv − CpL

T
+

dp

dT

[(
∂Sv

∂p

)
T

−
(

∂SL

∂p

)
T

]
and using

(
∂S
∂T

)
V

= −
(

∂V
∂T

)
p

and ignoring VL the result follows.

For the next bit, it is helpful to write this in the form

dp

dT

(
∂Vv

∂T

)
p

=
Cpv − CpL

T
− d

dT

(
L

T

)
.

(b) Adiabatic implies for the vapour that

dS =
(

∂S

∂T

)
p

dT +
(

∂S

∂p

)
T

dp = 0

i.e.

dS =
Cpv

T
dT −

(
∂Vv

∂T

)
p

dp = 0

so that
dp

dT
=

Cpv

T
(

∂Vv

∂T

)
p

.

Liquid will condense out if this gradient is smaller than the gradient of the phase boundary in the
p–T plane as evaluated by the Clausius Clapeyron equation (remember, we are doing an expansion,
so that p goes down). The gradient evaluated by the Clausius Clapeyron equation is

dp

dT
=

Cpv − CpL − T d
dT

(
L
T

)
T
(

∂Vv

∂T

)
p



based on the arguments in (a). Hence we require that

Cpv

T
(

∂Vv

∂T

)
p

<
Cpv − CpL − T d

dT

(
L
T

)
T
(

∂Vv

∂T

)
p

,

0 < −CpL − T
d

dT

(
L

T

)
,

CpL + T
d

dT

(
L

T

)
< 0.

28.5



28.6

Even if we go for a very heavy skater (100 kg), only making contact on the ice over an area 10 cm by
1 mm (10−4 m2), the pressure is only 107 Pa, and the melting line has a gradient 1.4 × 107 Pa (see
previous questions). This is not enough to melt the ice. The two articles quoted in the question are
excellent sources of further information.
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